Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Clin Infect Dis ; 2023 May 31.
Article in English | MEDLINE | ID: covidwho-20238063

ABSTRACT

INTRODUCTION: Understanding the changing epidemiology of adults hospitalized with coronavirus disease 2019 (COVID-19) informs research priorities and public health policies. METHODS: Among adults (≥18 years) hospitalized with laboratory-confirmed, acute COVID-19 between 11 March 2021, and 31 August 2022 at 21 hospitals in 18 states, those hospitalized during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron-predominant period (BA.1, BA.2, BA.4/BA.5) were compared to those from earlier Alpha- and Delta-predominant periods. Demographic characteristics, biomarkers within 24 hours of admission, and outcomes, including oxygen support and death, were assessed. RESULTS: Among 9825 patients, median (interquartile range [IQR]) age was 60 years (47-72), 47% were women, and 21% non-Hispanic Black. From the Alpha-predominant period (Mar-Jul 2021; N = 1312) to the Omicron BA.4/BA.5 sublineage-predominant period (Jun-Aug 2022; N = 1307): the percentage of patients who had ≥4 categories of underlying medical conditions increased from 11% to 21%; those vaccinated with at least a primary COVID-19 vaccine series increased from 7% to 67%; those ≥75 years old increased from 11% to 33%; those who did not receive any supplemental oxygen increased from 18% to 42%. Median (IQR) highest C-reactive protein and D-dimer concentration decreased from 42.0 mg/L (9.9-122.0) to 11.5 mg/L (2.7-42.8) and 3.1 mcg/mL (0.8-640.0) to 1.0 mcg/mL (0.5-2.2), respectively. In-hospital death peaked at 12% in the Delta-predominant period and declined to 4% during the BA.4/BA.5-predominant period. CONCLUSIONS: Compared to adults hospitalized during early COVID-19 variant periods, those hospitalized during Omicron-variant COVID-19 were older, had multiple co-morbidities, were more likely to be vaccinated, and less likely to experience severe respiratory disease, systemic inflammation, coagulopathy, and death.

2.
Vaccine ; 41(29): 4249-4256, 2023 06 29.
Article in English | MEDLINE | ID: covidwho-2319667

ABSTRACT

BACKGROUND: Accurate determination of COVID-19 vaccination status is necessary to produce reliable COVID-19 vaccine effectiveness (VE) estimates. Data comparing differences in COVID-19 VE by vaccination sources (i.e., immunization information systems [IIS], electronic medical records [EMR], and self-report) are limited. We compared the number of mRNA COVID-19 vaccine doses identified by each of these sources to assess agreement as well as differences in VE estimates using vaccination data from each individual source and vaccination data adjudicated from all sources combined. METHODS: Adults aged ≥18 years who were hospitalized with COVID-like illness at 21 hospitals in 18 U.S. states participating in the IVY Network during February 1-August 31, 2022, were enrolled. Numbers of COVID-19 vaccine doses identified by IIS, EMR, and self-report were compared in kappa agreement analyses. Effectiveness of mRNA COVID-19 vaccines against COVID-19-associated hospitalization was estimated using multivariable logistic regression models to compare the odds of COVID-19 vaccination between SARS-CoV-2-positive case-patients and SARS-CoV-2-negative control-patients. VE was estimated using each source of vaccination data separately and all sources combined. RESULTS: A total of 4499 patients were included. Patients with ≥1 mRNA COVID-19 vaccine dose were identified most frequently by self-report (n = 3570, 79 %), followed by IIS (n = 3272, 73 %) and EMR (n = 3057, 68 %). Agreement was highest between IIS and self-report for 4 doses with a kappa of 0.77 (95 % CI = 0.73-0.81). VE point estimates of 3 doses against COVID-19 hospitalization were substantially lower when using vaccination data from EMR only (VE = 31 %, 95 % CI = 16 %-43 %) than when using all sources combined (VE = 53 %, 95 % CI = 41 %-62%). CONCLUSION: Vaccination data from EMR only may substantially underestimate COVID-19 VE.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Adolescent , Self Report , Electronic Health Records , Vaccine Efficacy , COVID-19/prevention & control , SARS-CoV-2 , Immunization , Vaccination , Hospitalization , RNA, Messenger
3.
MMWR Morb Mortal Wkly Rep ; 72(17): 463-468, 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2294077

ABSTRACT

As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.


Subject(s)
COVID-19 , Humans , Adult , Adolescent , COVID-19/prevention & control , COVID-19 Vaccines , Hospital Mortality , Pandemics , Respiration, Artificial , SARS-CoV-2 , RNA, Messenger
4.
JAMA Netw Open ; 6(2): e2255795, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2238343

ABSTRACT

Importance: Individuals who survived COVID-19 often report persistent symptoms, disabilities, and financial consequences. However, national longitudinal estimates of symptom burden remain limited. Objective: To measure the incidence and changes over time in symptoms, disability, and financial status after COVID-19-related hospitalization. Design, Setting, and Participants: A national US multicenter prospective cohort study with 1-, 3-, and 6-month postdischarge visits was conducted at 44 sites participating in the National Heart, Lung, and Blood Institute Prevention and Early Treatment of Acute Lung Injury Network's Biology and Longitudinal Epidemiology: COVID-19 Observational (BLUE CORAL) study. Participants included hospitalized English- or Spanish-speaking adults without severe prehospitalization disabilities or cognitive impairment. Participants were enrolled between August 24, 2020, and July 20, 2021, with follow-up occurring through March 30, 2022. Exposure: Hospitalization for COVID-19 as identified with a positive SARS-CoV-2 molecular test. Main Outcomes and Measures: New or worsened cardiopulmonary symptoms, financial problems, functional impairments, perceived return to baseline health, and quality of life. Logistic regression was used to identify factors associated with new cardiopulmonary symptoms or financial problems at 6 months. Results: A total of 825 adults (444 [54.0%] were male, and 379 [46.0%] were female) met eligibility criteria and completed at least 1 follow-up survey. Median age was 56 (IQR, 43-66) years; 253 (30.7%) participants were Hispanic, 145 (17.6%) were non-Hispanic Black, and 360 (43.6%) were non-Hispanic White. Symptoms, disabilities, and financial problems remained highly prevalent among hospitalization survivors at month 6. Rates increased between months 1 and 6 for cardiopulmonary symptoms (from 67.3% to 75.4%; P = .001) and fatigue (from 40.7% to 50.8%; P < .001). Decreases were noted over the same interval for prevalent financial problems (from 66.1% to 56.4%; P < .001) and functional limitations (from 55.3% to 47.3%; P = .004). Participants not reporting problems at month 1 often reported new symptoms (60.0%), financial problems (23.7%), disabilities (23.8%), or fatigue (41.4%) at month 6. Conclusions and Relevance: The findings of this cohort study of people discharged after COVID-19 hospitalization suggest that recovery in symptoms, functional status, and fatigue was limited at 6 months, and some participants reported new problems 6 months after hospital discharge.


Subject(s)
COVID-19 , Humans , Male , Female , COVID-19/epidemiology , SARS-CoV-2 , Cohort Studies , Prospective Studies , Quality of Life , Aftercare , Patient Discharge
5.
Clin Infect Dis ; 2022 May 17.
Article in English | MEDLINE | ID: covidwho-2236202

ABSTRACT

BACKGROUND: COVID-19 mRNA vaccines were authorized in the United States in December 2020. Although vaccine effectiveness (VE) against mild infection declines markedly after several months, limited understanding exists on the long-term durability of protection against COVID-19-associated hospitalization. METHODS: Case control analysis of adults (≥18 years) hospitalized at 21 hospitals in 18 states March 11 - December 15, 2021, including COVID-19 case patients and RT-PCR-negative controls. We included adults who were unvaccinated or vaccinated with two doses of a mRNA vaccine before the date of illness onset. VE over time was assessed using logistic regression comparing odds of vaccination in cases versus controls, adjusting for confounders. Models included dichotomous time (<180 vs ≥180 days since dose two) and continuous time modeled using restricted cubic splines. RESULTS: 10,078 patients were included, 4906 cases (23% vaccinated) and 5172 controls (62% vaccinated). Median age was 60 years (IQR 46-70), 56% were non-Hispanic White, and 81% had ≥1 medical condition. Among immunocompetent adults, VE <180 days was 90% (95%CI: 88-91) vs 82% (95%CI: 79-85) at ≥180 days (p < 0.001). VE declined for Pfizer-BioNTech (88% to 79%, p < 0.001) and Moderna (93% to 87%, p < 0.001) products, for younger adults (18-64 years) [91% to 87%, p = 0.005], and for adults ≥65 years of age (87% to 78%, p < 0.001). In models using restricted cubic splines, similar changes were observed. CONCLUSION: In a period largely pre-dating Omicron variant circulation, effectiveness of two mRNA doses against COVID-19-associated hospitalization was largely sustained through 9 months.

6.
Open Forum Infect Dis ; 10(1): ofac698, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2212869

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) vaccine effectiveness (VE) studies are increasingly reporting relative VE (rVE) comparing a primary series plus booster doses with a primary series only. Interpretation of rVE differs from traditional studies measuring absolute VE (aVE) of a vaccine regimen against an unvaccinated referent group. We estimated aVE and rVE against COVID-19 hospitalization in primary-series plus first-booster recipients of COVID-19 vaccines. Methods: Booster-eligible immunocompetent adults hospitalized at 21 medical centers in the United States during December 25, 2021-April 4, 2022 were included. In a test-negative design, logistic regression with case status as the outcome and completion of primary vaccine series or primary series plus 1 booster dose as the predictors, adjusted for potential confounders, were used to estimate aVE and rVE. Results: A total of 2060 patients were analyzed, including 1104 COVID-19 cases and 956 controls. Relative VE against COVID-19 hospitalization in boosted mRNA vaccine recipients versus primary series only was 66% (95% confidence interval [CI], 55%-74%); aVE was 81% (95% CI, 75%-86%) for boosted versus 46% (95% CI, 30%-58%) for primary. For boosted Janssen vaccine recipients versus primary series, rVE was 49% (95% CI, -9% to 76%); aVE was 62% (95% CI, 33%-79%) for boosted versus 36% (95% CI, -4% to 60%) for primary. Conclusions: Vaccine booster doses increased protection against COVID-19 hospitalization compared with a primary series. Comparing rVE measures across studies can lead to flawed interpretations of the added value of a new vaccination regimen, whereas difference in aVE, when available, may be a more useful metric.

7.
MMWR Morb Mortal Wkly Rep ; 71(5152): 1625-1630, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2204208

ABSTRACT

Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).


Subject(s)
COVID-19 , Humans , Aged , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Vaccine Efficacy , Hospitalization , RNA, Messenger , Vaccines, Combined
8.
Vaccine ; 40(48): 6979-6986, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2082297

ABSTRACT

BACKGROUND: Test-negative design (TND) studies have produced validated estimates of vaccine effectiveness (VE) for influenza vaccine studies. However, syndrome-negative controls have been proposed for differentiating bias and true estimates in VE evaluations for COVID-19. To understand the use of alternative control groups, we compared characteristics and VE estimates of syndrome-negative and test-negative VE controls. METHODS: Adults hospitalized at 21 medical centers in 18 states March 11-August 31, 2021 were eligible for analysis. Case patients had symptomatic acute respiratory infection (ARI) and tested positive for SARS-CoV-2. Control groups were test-negative patients with ARI but negative SARS-CoV-2 testing, and syndrome-negative controls were without ARI and negative SARS-CoV-2 testing. Chi square and Wilcoxon rank sum tests were used to detect differences in baseline characteristics. VE against COVID-19 hospitalization was calculated using logistic regression comparing adjusted odds of prior mRNA vaccination between cases hospitalized with COVID-19 and each control group. RESULTS: 5811 adults (2726 cases, 1696 test-negative controls, and 1389 syndrome-negative controls) were included. Control groups differed across characteristics including age, race/ethnicity, employment, previous hospitalizations, medical conditions, and immunosuppression. However, control-group-specific VE estimates were very similar. Among immunocompetent patients aged 18-64 years, VE was 93 % (95 % CI: 90-94) using syndrome-negative controls and 91 % (95 % CI: 88-93) using test-negative controls. CONCLUSIONS: Despite demographic and clinical differences between control groups, the use of either control group produced similar VE estimates across age groups and immunosuppression status. These findings support the use of test-negative controls and increase confidence in COVID-19 VE estimates produced by test-negative design studies.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , Adult , United States/epidemiology , Influenza, Human/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , COVID-19 Testing , Vaccine Efficacy , Case-Control Studies , Hospitalization , Syndrome
9.
MMWR Morb Mortal Wkly Rep ; 71(42): 1327-1334, 2022 Oct 21.
Article in English | MEDLINE | ID: covidwho-2081112

ABSTRACT

The SARS-CoV-2 Omicron variant (B.1.1.529 or BA.1) became predominant in the United States by late December 2021 (1). BA.1 has since been replaced by emerging lineages BA.2 (including BA.2.12.1) in March 2022, followed by BA.4 and BA.5, which have accounted for a majority of SARS-CoV-2 infections since late June 2022 (1). Data on the effectiveness of monovalent mRNA COVID-19 vaccines against BA.4/BA.5-associated hospitalizations are limited, and their interpretation is complicated by waning of vaccine-induced immunity (2-5). Further, infections with earlier Omicron lineages, including BA.1 and BA.2, reduce vaccine effectiveness (VE) estimates because certain persons in the referent unvaccinated group have protection from infection-induced immunity. The IVY Network† assessed effectiveness of 2, 3, and 4 doses of monovalent mRNA vaccines compared with no vaccination against COVID-19-associated hospitalization among immunocompetent adults aged ≥18 years during December 26, 2021-August 31, 2022. During the BA.1/BA.2 period, VE 14-150 days after a second dose was 63% and decreased to 34% after 150 days. Similarly, VE 7-120 days after a third dose was 79% and decreased to 41% after 120 days. VE 7-120 days after a fourth dose was 61%. During the BA.4/BA.5 period, similar trends were observed, although CIs for VE estimates between categories of time since the last dose overlapped. VE 14-150 days and >150 days after a second dose was 83% and 37%, respectively. VE 7-120 days and >120 days after a third dose was 60%and 29%, respectively. VE 7-120 days after the fourth dose was 61%. Protection against COVID-19-associated hospitalization waned even after a third dose. The newly authorized bivalent COVID-19 vaccines include mRNA from the ancestral SARS-CoV-2 strain and from shared mRNA components between BA.4 and BA.5 lineages and are expected to be more immunogenic against BA.4/BA.5 than monovalent mRNA COVID-19 vaccines (6-8). All eligible adults aged ≥18 years§ should receive a booster dose, which currently consists of a bivalent mRNA vaccine, to maximize protection against BA.4/BA.5 and prevent COVID-19-associated hospitalization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , United States/epidemiology , Humans , Adolescent , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Vaccines, Combined , RNA, Messenger
10.
Clin Infect Dis ; 75(Supplement_2): S159-S166, 2022 Oct 03.
Article in English | MEDLINE | ID: covidwho-2077717

ABSTRACT

Background . Adults in the United States (US) began receiving the adenovirus vector coronavirus disease 2019 (COVID-19) vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. Methods . In a multicenter case-control analysis of US adults (≥18 years) hospitalized 11 March to 15 December 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. Results . After excluding patients receiving mRNA vaccines, among 3979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% confidence interval [CI]: 63-75%) overall, including 55% (29-72%) among immunocompromised patients, and 72% (64-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59-82%]), 91-180 days (71% [60-80%]), and 181-274 days (70% [54-81%]) postvaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18-65%) among immunocompetent patients. Conclusions . The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months postvaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Ad26COVS1 , Adult , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Influenza, Human/prevention & control , Severity of Illness Index , United States/epidemiology
11.
BMJ ; 379: e072065, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2064091

ABSTRACT

OBJECTIVE: To compare the effectiveness of a primary covid-19 vaccine series plus booster doses with a primary series alone for the prevention of hospital admission with omicron related covid-19 in the United States. DESIGN: Multicenter observational case-control study with a test negative design. SETTING: Hospitals in 18 US states. PARTICIPANTS: 4760 adults admitted to one of 21 hospitals with acute respiratory symptoms between 26 December 2021 and 30 June 2022, a period when the omicron variant was dominant. Participants included 2385 (50.1%) patients with laboratory confirmed covid-19 (cases) and 2375 (49.9%) patients who tested negative for SARS-CoV-2 (controls). MAIN OUTCOME MEASURES: The main outcome was vaccine effectiveness against hospital admission with covid-19 for a primary series plus booster doses and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. Vaccine effectiveness analyses were stratified by immunosuppression status (immunocompetent, immunocompromised). The primary analysis evaluated all covid-19 vaccine types combined, and secondary analyses evaluated specific vaccine products. RESULTS: Overall, median age of participants was 64 years (interquartile range 52-75 years), 994 (20.8%) were immunocompromised, 85 (1.8%) were vaccinated with a primary series plus two boosters, 1367 (28.7%) with a primary series plus one booster, and 1875 (39.3%) with a primary series alone, and 1433 (30.1%) were unvaccinated. Among immunocompetent participants, vaccine effectiveness for prevention of hospital admission with omicron related covid-19 for a primary series plus two boosters was 63% (95% confidence interval 37% to 78%), a primary series plus one booster was 65% (58% to 71%), and for a primary series alone was 37% (25% to 47%) (P<0.001 for the pooled boosted regimens compared with a primary series alone). Vaccine effectiveness was higher for a boosted regimen than for a primary series alone for both mRNA vaccines (BNT162b2 (Pfizer-BioNTech): 73% (44% to 87%) for primary series plus two boosters, 64% (55% to 72%) for primary series plus one booster, and 36% (21% to 48%) for primary series alone (P<0.001); mRNA-1273 (Moderna): 68% (17% to 88%) for primary series plus two boosters, 65% (55% to 73%) for primary series plus one booster, and 41% (25% to 54%) for primary series alone (P=0.001)). Among immunocompromised patients, vaccine effectiveness for a primary series plus one booster was 69% (31% to 86%) and for a primary series alone was 49% (30% to 63%) (P=0.04). CONCLUSION: During the first six months of 2022 in the US, booster doses of a covid-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing hospital admissions with omicron related covid-19. READERS' NOTE: This article is a living test negative design study that will be updated to reflect emerging evidence. Updates may occur for up to two years from the date of original publication.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Aged , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Hospitals , Humans , Middle Aged , SARS-CoV-2 , United States/epidemiology , Vaccine Efficacy
12.
medRxiv ; 2021 Jul 08.
Article in English | MEDLINE | ID: covidwho-1978307

ABSTRACT

BACKGROUND: As SARS-CoV-2 vaccination coverage increases in the United States (US), there is a need to understand the real-world effectiveness against severe Covid-19 and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11 - May 5, 2021, we evaluated vaccine effectiveness to prevent Covid-19 hospitalizations by comparing odds of prior vaccination with an mRNA vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with Covid-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1210 participants, median age was 58 years, 22.8% were Black, 13.8% were Hispanic, and 20.6% had immunosuppression. SARS-CoV-2 lineage B.1.1.7 was most common variant (59.7% of sequenced viruses). Full vaccination (receipt of two vaccine doses ≥14 days before illness onset) had been received by 45/590 (7.6%) cases and 215/620 (34.7%) controls. Overall vaccine effectiveness was 86.9% (95% CI: 80.4 to 91.2%). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.3%; 95% CI: 78.9 to 99.7%). Among 45 patients with vaccine-breakthrough Covid hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (59.2%; 95% CI: 11.9 to 81.1%) than without immunosuppression (91.3%; 95% CI: 85.5 to 94.7%). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing Covid-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.

13.
J Infect Dis ; 226(5): 797-807, 2022 09 13.
Article in English | MEDLINE | ID: covidwho-1853098

ABSTRACT

BACKGROUND: The study objective was to evaluate 2- and 3-dose coronavirus disease 2019 (COVID-19) mRNA vaccine effectiveness (VE) in preventing COVID-19 hospitalization among adult solid organ transplant (SOT) recipients. METHODS: We conducted a 21-site case-control analysis of 10 425 adults hospitalized in March to December 2021. Cases were hospitalized with COVID-19; controls were hospitalized for an alternative diagnosis (severe acute respiratory syndrome coronavirus 2-negative). Participants were classified as follows: SOT recipient (n = 440), other immunocompromising condition (n = 1684), or immunocompetent (n = 8301). The VE against COVID-19-associated hospitalization was calculated as 1-adjusted odds ratio of prior vaccination among cases compared with controls. RESULTS: Among SOT recipients, VE was 29% (95% confidence interval [CI], -19% to 58%) for 2 doses and 77% (95% CI, 48% to 90%) for 3 doses. Among patients with other immunocompromising conditions, VE was 72% (95% CI, 64% to 79%) for 2 doses and 92% (95% CI, 85% to 95%) for 3 doses. Among immunocompetent patients, VE was 88% (95% CI, 87% to 90%) for 2 doses and 96% (95% CI, 83% to 99%) for 3 doses. CONCLUSIONS: Effectiveness of COVID-19 mRNA vaccines was lower for SOT recipients than immunocompetent adults and those with other immunocompromising conditions. Among SOT recipients, vaccination with 3 doses of an mRNA vaccine led to substantially greater protection than 2 doses.


Subject(s)
COVID-19 , Organ Transplantation , Adult , COVID-19/prevention & control , Hospitalization , Humans , Organ Transplantation/adverse effects , RNA, Messenger , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
14.
J Intensive Care Med ; 37(8): 1019-1028, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1775173

ABSTRACT

BACKGROUND: Understanding the long-term sequelae of severe COVID-19 remains limited, particularly in the United States. OBJECTIVE: To examine long-term outcomes of patients who required intensive care unit (ICU) admission for severe COVID-19. DESIGN, PATIENTS, AND MAIN MEASURES: This is a prospective cohort study of patients who had severe COVID-19 requiring an ICU admission in a two-hospital academic health system in Southern California. Patients discharged alive between 3/21/2020 and 12/31/2020 were surveyed approximately 6 months after discharge to assess health-related quality of life using Patient-Reported Outcomes Measurement Information System (PROMIS®)-29 v2.1, post-traumatic stress disorder (PTSD) and loneliness scales. A preference-based health utility score (PROPr) was estimated using 7 PROMIS domain scores. Patients were also asked their attitude about receiving aggressive ICU care. KEY RESULTS: Of 275 patients admitted to the ICU for severe COVID-19, 205 (74.5%) were discharged alive and 132 (64%, median age 59, 46% female) completed surveys a median of 182 days post-discharge. Anxiety, depression, fatigue, sleep disturbance, ability to participate in social activities, pain interference, and cognitive function were not significantly different from the U.S. general population, but physical function (44.2, SD 11.0) was worse. PROPr mean score of 0.46 (SD 0.30, range -0.02 to 0.96 [<0 is worse than dead and 1 represents perfect health]) was slightly lower than the U.S. general population, with an even distribution across the continuum. Poor PROPr was associated with chronic medical conditions and receipt of life-sustaining treatments, but not demographics or social vulnerability. PTSD was suspected in 20% and loneliness in 29% of patients. Ninety-eight percent of patients were glad they received life-saving treatment. CONCLUSION: Most patients who survive severe COVID-19 achieve positive outcomes, with health scores similar to the general population at 6 months post-discharge. However, there is marked heterogeneity in outcomes with a substantial minority reporting severely compromised health.


Subject(s)
COVID-19 , Quality of Life , Aftercare , COVID-19/therapy , Female , Humans , Intensive Care Units , Male , Middle Aged , Patient Discharge , Prospective Studies
15.
MMWR Morb Mortal Wkly Rep ; 71(12): 459-465, 2022 Mar 25.
Article in English | MEDLINE | ID: covidwho-1761302

ABSTRACT

COVID-19 mRNA vaccines (BNT162b2 [Pfizer-BioNTech] and mRNA-1273 [Moderna]) are effective at preventing COVID-19-associated hospitalization (1-3). However, how well mRNA vaccines protect against the most severe outcomes of these hospitalizations, including invasive mechanical ventilation (IMV) or death is uncertain. Using a case-control design, mRNA vaccine effectiveness (VE) against COVID-19-associated IMV and in-hospital death was evaluated among adults aged ≥18 years hospitalized at 21 U.S. medical centers during March 11, 2021-January 24, 2022. During this period, the most commonly circulating variants of SARS-CoV-2, the virus that causes COVID-19, were B.1.1.7 (Alpha), B.1.617.2 (Delta), and B.1.1.529 (Omicron). Previous vaccination (2 or 3 versus 0 vaccine doses before illness onset) in prospectively enrolled COVID-19 case-patients who received IMV or died within 28 days of hospitalization was compared with that among hospitalized control patients without COVID-19. Among 1,440 COVID-19 case-patients who received IMV or died, 307 (21%) had received 2 or 3 vaccine doses before illness onset. Among 6,104 control-patients, 4,020 (66%) had received 2 or 3 vaccine doses. Among the 1,440 case-patients who received IMV or died, those who were vaccinated were older (median age = 69 years), more likely to be immunocompromised* (40%), and had more chronic medical conditions compared with unvaccinated case-patients (median age = 55 years; immunocompromised = 10%; p<0.001 for both). VE against IMV or in-hospital death was 90% (95% CI = 88%-91%) overall, including 88% (95% CI = 86%-90%) for 2 doses and 94% (95% CI = 91%-96%) for 3 doses, and 94% (95% CI = 88%-97%) for 3 doses during the Omicron-predominant period. COVID-19 mRNA vaccines are highly effective in preventing COVID-19-associated death and respiratory failure treated with IMV. CDC recommends that all persons eligible for vaccination get vaccinated and stay up to date with COVID-19 vaccination (4).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/prevention & control , Respiration, Artificial , Vaccine Efficacy , COVID-19/mortality , Hospital Mortality , Humans , United States/epidemiology
16.
Am J Crit Care ; 31(2): 146-157, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1737135

ABSTRACT

BACKGROUND: Understanding COVID-19 epidemiology is crucial to clinical care and to clinical trial design and interpretation. OBJECTIVE: To describe characteristics, treatment, and outcomes among patients hospitalized with COVID-19 early in the pandemic. METHODS: A retrospective cohort study of consecutive adult patients with laboratory-confirmed, symptomatic SARS-CoV-2 infection admitted to 57 US hospitals from March 1 to April 1, 2020. RESULTS: Of 1480 inpatients with COVID-19, median (IQR) age was 62.0 (49.4-72.9) years, 649 (43.9%) were female, and 822 of 1338 (61.4%) were non-White or Hispanic/Latino. Intensive care unit admission occurred in 575 patients (38.9%), mostly within 4 days of hospital presentation. Respiratory failure affected 583 patients (39.4%), including 284 (19.2%) within 24 hours of hospital presentation and 413 (27.9%) who received invasive mechanical ventilation. Median (IQR) hospital stay was 8 (5-15) days overall and 15 (9-24) days among intensive care unit patients. Hospital mortality was 17.7% (n = 262). Risk factors for hospital death identified by penalized multivariable regression included older age; male sex; comorbidity burden; symptoms-to-admission interval; hypotension; hypoxemia; and higher white blood cell count, creatinine level, respiratory rate, and heart rate. Of 1218 survivors, 221 (18.1%) required new respiratory support at discharge and 259 of 1153 (22.5%) admitted from home required new health care services. CONCLUSIONS: In a geographically diverse early-pandemic COVID-19 cohort with complete hospital folllow-up, hospital mortality was associated with older age, comorbidity burden, and male sex. Intensive care unit admissions occurred early and were associated with protracted hospital stays. Survivors often required new health care services or respiratory support at discharge.


Subject(s)
COVID-19 , Aged , COVID-19/therapy , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Male , Middle Aged , Pandemics , Respiration, Artificial , Retrospective Studies , SARS-CoV-2
17.
BMJ ; 376: e069761, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1736045

ABSTRACT

OBJECTIVES: To characterize the clinical severity of covid-19 associated with the alpha, delta, and omicron SARS-CoV-2 variants among adults admitted to hospital and to compare the effectiveness of mRNA vaccines to prevent hospital admissions related to each variant. DESIGN: Case-control study. SETTING: 21 hospitals across the United States. PARTICIPANTS: 11 690 adults (≥18 years) admitted to hospital: 5728 with covid-19 (cases) and 5962 without covid-19 (controls). Patients were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and, if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: alpha (11 March to 3 July 2021), delta (4 July to 25 December 2021), and omicron (26 December 2021 to 14 January 2022). MAIN OUTCOME MEASURES: Vaccine effectiveness calculated using a test negative design for mRNA vaccines to prevent covid-19 related hospital admissions by each variant (alpha, delta, omicron). Among patients admitted to hospital with covid-19, disease severity on the World Health Organization's clinical progression scale was compared among variants using proportional odds regression. RESULTS: Effectiveness of the mRNA vaccines to prevent covid-19 associated hospital admissions was 85% (95% confidence interval 82% to 88%) for two vaccine doses against the alpha variant, 85% (83% to 87%) for two doses against the delta variant, 94% (92% to 95%) for three doses against the delta variant, 65% (51% to 75%) for two doses against the omicron variant; and 86% (77% to 91%) for three doses against the omicron variant. In-hospital mortality was 7.6% (81/1060) for alpha, 12.2% (461/3788) for delta, and 7.1% (40/565) for omicron. Among unvaccinated patients with covid-19 admitted to hospital, severity on the WHO clinical progression scale was higher for the delta versus alpha variant (adjusted proportional odds ratio 1.28, 95% confidence interval 1.11 to 1.46), and lower for the omicron versus delta variant (0.61, 0.49 to 0.77). Compared with unvaccinated patients, severity was lower for vaccinated patients for each variant, including alpha (adjusted proportional odds ratio 0.33, 0.23 to 0.49), delta (0.44, 0.37 to 0.51), and omicron (0.61, 0.44 to 0.85). CONCLUSIONS: mRNA vaccines were found to be highly effective in preventing covid-19 associated hospital admissions related to the alpha, delta, and omicron variants, but three vaccine doses were required to achieve protection against omicron similar to the protection that two doses provided against the delta and alpha variants. Among adults admitted to hospital with covid-19, the omicron variant was associated with less severe disease than the delta variant but still resulted in substantial morbidity and mortality. Vaccinated patients admitted to hospital with covid-19 had significantly lower disease severity than unvaccinated patients for all the variants.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2 , Case-Control Studies , Hospitalization , Humans , Immunization Schedule , Prospective Studies , Severity of Illness Index , United States
18.
J Infect Dis ; 225(10): 1694-1700, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1704377

ABSTRACT

Vaccine effectiveness (VE) against COVID-19 hospitalization was evaluated among immunocompetent adults (≥18 years) during March-August 2021 using a case-control design. Among 1669 hospitalized COVID-19 cases (11% fully vaccinated) and 1950 RT-PCR-negative controls (54% fully vaccinated), VE was 96% (95% confidence interval [CI], 93%-98%) among patients with no chronic medical conditions and 83% (95% CI, 76%-88%) among patients with ≥ 3 categories of conditions. VE was similar between those aged 18-64 years versus ≥65 years (P > .05). VE against severe COVID-19 was very high among adults without chronic conditions and lessened with increasing comorbidity burden.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Chronic Disease , Hospitalization , Humans , Vaccines, Synthetic , mRNA Vaccines
19.
Clin Infect Dis ; 74(9): 1515-1524, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1700456

ABSTRACT

BACKGROUND: As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination coverage increases in the United States, there is a need to understand the real-world effectiveness against severe coronavirus disease 2019 (COVID-19) and among people at increased risk for poor outcomes. METHODS: In a multicenter case-control analysis of US adults hospitalized March 11-May 5, 2021, we evaluated vaccine effectiveness to prevent COVID-19 hospitalizations by comparing odds of prior vaccination with a messenger RNA (mRNA) vaccine (Pfizer-BioNTech or Moderna) between cases hospitalized with COVID-19 and hospital-based controls who tested negative for SARS-CoV-2. RESULTS: Among 1212 participants, including 593 cases and 619 controls, median age was 58 years, 22.8% were Black, 13.9% were Hispanic, and 21.0% had immunosuppression. SARS-CoV-2 lineage B0.1.1.7 (Alpha) was the most common variant (67.9% of viruses with lineage determined). Full vaccination (receipt of 2 vaccine doses ≥14 days before illness onset) had been received by 8.2% of cases and 36.4% of controls. Overall vaccine effectiveness was 87.1% (95% confidence interval [CI], 80.7-91.3). Vaccine effectiveness was similar for Pfizer-BioNTech and Moderna vaccines, and highest in adults aged 18-49 years (97.4%; 95% CI, 79.3-9.7). Among 45 patients with vaccine-breakthrough COVID hospitalizations, 44 (97.8%) were ≥50 years old and 20 (44.4%) had immunosuppression. Vaccine effectiveness was lower among patients with immunosuppression (62.9%; 95% CI,20.8-82.6) than without immunosuppression (91.3%; 95% CI, 85.6-94.8). CONCLUSION: During March-May 2021, SARS-CoV-2 mRNA vaccines were highly effective for preventing COVID-19 hospitalizations among US adults. SARS-CoV-2 vaccination was beneficial for patients with immunosuppression, but effectiveness was lower in the immunosuppressed population.


Subject(s)
COVID-19 , Adult , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Hospitalization , Humans , Middle Aged , RNA , SARS-CoV-2 , United States/epidemiology , mRNA Vaccines
20.
JAMA ; 326(20): 2043-2054, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1544165

ABSTRACT

Importance: A comprehensive understanding of the benefits of COVID-19 vaccination requires consideration of disease attenuation, determined as whether people who develop COVID-19 despite vaccination have lower disease severity than unvaccinated people. Objective: To evaluate the association between vaccination with mRNA COVID-19 vaccines-mRNA-1273 (Moderna) and BNT162b2 (Pfizer-BioNTech)-and COVID-19 hospitalization, and, among patients hospitalized with COVID-19, the association with progression to critical disease. Design, Setting, and Participants: A US 21-site case-control analysis of 4513 adults hospitalized between March 11 and August 15, 2021, with 28-day outcome data on death and mechanical ventilation available for patients enrolled through July 14, 2021. Date of final follow-up was August 8, 2021. Exposures: COVID-19 vaccination. Main Outcomes and Measures: Associations were evaluated between prior vaccination and (1) hospitalization for COVID-19, in which case patients were those hospitalized for COVID-19 and control patients were those hospitalized for an alternative diagnosis; and (2) disease progression among patients hospitalized for COVID-19, in which cases and controls were COVID-19 patients with and without progression to death or mechanical ventilation, respectively. Associations were measured with multivariable logistic regression. Results: Among 4513 patients (median age, 59 years [IQR, 45-69]; 2202 [48.8%] women; 23.0% non-Hispanic Black individuals, 15.9% Hispanic individuals, and 20.1% with an immunocompromising condition), 1983 were case patients with COVID-19 and 2530 were controls without COVID-19. Unvaccinated patients accounted for 84.2% (1669/1983) of COVID-19 hospitalizations. Hospitalization for COVID-19 was significantly associated with decreased likelihood of vaccination (cases, 15.8%; controls, 54.8%; adjusted OR, 0.15; 95% CI, 0.13-0.18), including for sequenced SARS-CoV-2 Alpha (8.7% vs 51.7%; aOR, 0.10; 95% CI, 0.06-0.16) and Delta variants (21.9% vs 61.8%; aOR, 0.14; 95% CI, 0.10-0.21). This association was stronger for immunocompetent patients (11.2% vs 53.5%; aOR, 0.10; 95% CI, 0.09-0.13) than immunocompromised patients (40.1% vs 58.8%; aOR, 0.49; 95% CI, 0.35-0.69) (P < .001) and weaker at more than 120 days since vaccination with BNT162b2 (5.8% vs 11.5%; aOR, 0.36; 95% CI, 0.27-0.49) than with mRNA-1273 (1.9% vs 8.3%; aOR, 0.15; 95% CI, 0.09-0.23) (P < .001). Among 1197 patients hospitalized with COVID-19, death or invasive mechanical ventilation by day 28 was associated with decreased likelihood of vaccination (12.0% vs 24.7%; aOR, 0.33; 95% CI, 0.19-0.58). Conclusions and Relevance: Vaccination with an mRNA COVID-19 vaccine was significantly less likely among patients with COVID-19 hospitalization and disease progression to death or mechanical ventilation. These findings are consistent with risk reduction among vaccine breakthrough infections compared with absence of vaccination.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Hospitalization/statistics & numerical data , Adult , Aged , COVID-19/classification , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , COVID-19 Vaccines/classification , Case-Control Studies , Disease Progression , Female , Humans , Male , Middle Aged , Respiration, Artificial , SARS-CoV-2 , Severity of Illness Index , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL